
IG Custom Shaders and
Effects
Rob Wyatt

Insomniac Games

Who needs custom rendering

• Artists
– Materials which are not related to our

standard shader model but need to be applied
to regular assets. Anisotropic, Water, Fur etc.

• Programmers
– Special rendering effects for all manner of

things.
– Typically need the effect applied to an

individual instance, not the shader or class.

Types of custom rendering
• The engine provides support for the following:

– Custom shaders
– Procedural shaders
– Render overrides

• All the custom rendering modes need some sort
of programmer support, not always engine
support.

• Its much easier than using something like Flex in
which you have to manage your own geometry.

Custom Shaders
• Implements a standalone material that can

be used on regular assets.
• Needs tools support for the editor dialog,

enabling artists to set the properties.
• The shader data must be less than 128

bytes
• Ideally works on all asset types but in

reality only a subset is implemented.
• Typically implemented by the engine.

Procedural Shaders
• Standard or custom shaders that have callbacks into

engine/game code.
• The callback is more like a message and you get a

reason code.
• Typical reason codes Init,Close and Update which is

called per frame.
• Callbacks are normally game specific, live in game code

and are implemented by gameplay programmers.
• The callback is free to modify the material in any way. It

can animate shader values, change textures.
• More complex callbacks may render geometry or special

effects to a texture and then use the result.

Render Overrides
• Only works for mobys.
• Per instance callback that can be set in the

moby instance.
• The callback function is called instead of using

the normal rendering code.
• The callback is called once for the entire moby.
• You can render the moby or you can render

something completely different.
• Cloaking effect is implemented with this.
• Gameplay can implement their own callbacks.

Anisotropic
• Example of a full custom shader.

Anisotropic

• The following are examples of anisotropic
surfaces:
– Satin cloth
– Christmas tree balls (the ornaments covered

in threads)
– Compact Discs
– Brushed metal
– Hair

Anisotropic
• Ansiotropic surfaces have an inherent

grain (locally, favors a particular surface
tangent orientation)

• Distribution of surface normals along the
surface scratches or fibers is different from
the distribution across them

• A relatively distant observer sees the
lighting result, but not the microstructure.

Anisotropic
• Traditional lighting models consider 3D surfaces

as being locally flat
• The normal vector at a point on the surface is

orthogonal to the flatness
• Implicitly assumes surface tangents are

uniformly distributed (isotropic distribution)
• Effects such as bump mapping may perturb the

surface normals, but substructure of the surface
still modeled as locally flat

Anisotropic

• From the art point of view the shader is
pretty much the same as the basic shader.

• It has 3 textures, base map, normal map
and grain map. It has a couple of tint
colors and a specular power.

• The grain map sets the anisotropic
direction. Its very difficult to create.

• Shader only supports mobys

• How would you light a thread or hair?
• There is no traditional surface normal!
• Logically, each point on the thread has an

infinite “circle” of normals perpendicular to
the tangent at the point.

Anisotropic
• The full solution is to integrate the full the

contribution of all normals.
• Too expensive, Too hard and not possible in

a fragment program
• Pick the most significant normal and use it.

Anisotropic
• Pick the normal that is co-planar with the

light vector and view vector.
• This vector will maximize the lighting dot

products (i.e., it’s the most significant
vector).

• If you work the math out on paper you
don’t need to calculate the most significant
normal.

• You don’t need the normal at all!

Anisotropic

• Diffuse = sqrt(1 - (< L ·T >) 2)
• Specular = sqrt(1 - (< L ·T >) 2) ×

 sqrt(1 - (< V ·T >) 2) -
 < L ·T > × < V ·T >

• L is light to thread direction
• V is eye to thread direction
• T is the tangent (grain) direction

Anisotropic
• Actually, We do need a normal.
• Our shader implements per pixel anisotropic

and the grain direction changes with the
normal map.

Anisotropic
• We need to keep the grain perpendicular

to the per pixel normal.
• Graham-Schmidt orthonormalization does

just this and its cheap.

• Tnew = || T - (N · T) N ||

• Once we have computed the new grain we
are done with the normal.

Anisotropic

• Implemented as a full custom shader.
• Artists can apply the shader like any other
• Artists control all the properties.
• There are not many controls:

– Base map
– Normal map
– Grain map
– Tint and specular power controls

Anisotropic
• The grain map is difficult to author.
• Its similar to a normal map but its stored

as an XY component.
• Its basically just a direction and could be

stored as an angle.
• Very difficult to author if you want swirls

like brushed steel.
• The code is implemented as 2 vertex

programs and a fragment program.

Anisotropic
• Problems with Anisotropic lighting.
• Its inherently 2 sided so you have to prevent the

back side of surfaces from lighting.
• It needs a light direction making it very difficult to

implement as a baked light – What is the light
direction?

• Real time lights are much easier, they have a
direction and a color.

• This is why we only support mobys, the have 2
directional lights.

Cloaked

Cloaked

• Implemented as a render override.
• Artists don’t get any say in it, the shader is

not available to them.
• Can be enabled per instance and different

instances can use different settings.
• It’s a very simple effect, no math!
• It’s a little expensive for the GPU.
• Was used by the Pirates in RCF.

Cloaked
• Enabled by setting “m_user_layer_func” in the

moby instance to the render callback function.
• “m_user_layer_data” points to a structure that

contains the settings and controls.
• Available Control:

– Scale and bias control the distortion
– Tint color tints the cloaked effect
– Bloom adjust allow the cloaked objects to bloom

• All the controls can be animated for more
dynamic effects.

Cloaked

• When enabled the engine sends the entire
moby to the sort layer.

• The callback is called by the core engine
in sorted back to front order.

• The effect is treated as if its alpha.

Cloaked
• The callback function grabs the current frame

buffer as a texture.
– Requires 4mb of memory in the effects heap.

• Renders the moby with depth only
• Renders the moby again using the grabbed

framed buffer as a texture.
• The normal maps of the shaders used by the

moby in normal rendering are used to offset the
samples.

• Its all controlled by the control structure.

Cloaked
• One feature that is missing is the ability to mix

the cloaked effect with the normal rendering.
• This would allow the solid objects to gradually

cloak themselves rather that it just switching on
and off.

• Its not immediately obvious how this would be
implemented.

• Its especially difficult if the moby has real time
lighting or shadows.

Fur

Fur

• Implemented as an artist controlled
custom shader.

• Only supports mobys.
• Has controls for length and density of the

fur.
• Uses a base texture to color the hair.
• There is a built in texture that models the

hair itself.

Fur

• It’s a really simple technique.
• Its expensive for the GPU but can be done

entirely on the GPU.
• Lots of render passes

– Maybe skin and render the same mesh 16 or
more times.

• Each pass is rendered in alpha so lots of
bandwith is used.

Fur
• Traditionally fur used fins and shells.
• The fins cause problems for a GPU

implementation because they require finding the
silhouette edge.

• Fins are typically done on the CPU but this has
problems with skinning because the CPU never
sees the skinned positions.

• This fur is rendered entirely with shells.
• Its known as “Lengyel’s concentric fur shell

technique”.

Fur

• First a solid moby is rendered, this is the
base or skin level.

• For each shell the moby is rerendered
– The image of ratchet has 20 shells.

• Each shell is scaled per vertex in the
direction of the normal.

• Each shell is rendered with a “Hair Slice”
texture.

Fur

Fur
• The first slice texture is placed on the first shell,

the second on the second shell etc etc
• The hair texture is noisy and tiles nicely.
• This allows so the base map UVs to be used for

the slice UVs, regardless of what they are.
• We can control the global scale of the UVs, this

controls the density and size of each strand of
hair. At the lowest level it looks more like
feathers.

• That’s all it does for the basic fur.

Fur
• We do a little more work..
• Hair has anisotropic lighting and we know the direction of

the hair.
• The hair direction can be changed via the normal map.
• We use the alpha channel in the basemap to mask

where hair can go.
– Very expensive because you are still paying the full cost of all

the shells.
• We change the hair direction by slightly adjusting the

UVs in a given direction.
• The UV adjustment is scaled by the shell distance so

external shells move the UVs more than internal shells.

Fur
• Other people have used the GPU to apply physical

properties to the fur. They render a texture which
contains the offset of each hair strand.

• When making the offset texture you can account for
wind, movement of the object, drag and inertia.

• You can do as much math as you like in the pixel shader,
ultimately you are writing out a 2D vector.

• We tried this but it had some math which nobody
seemed to understand.

• The fur was not used in RCF. Ratchet use a different
technique that was half done by code and half by art.

• Ratchets fur was also a custom shader.

