|G Custom Shaders and
Effects

Rob Wyatt
Insomniac Games

Who needs custom rendering

* Artists

— Materials which are not related to our
standard shader model but need to be applied
to regular assets. Anisotropic, Water, Fur etc.

* Programmers

— Special rendering effects for all manner of
things.

— Typically need the effect applied to an
Individual instance, not the shader or class.

Types of custom rendering

* The engine provides support for the following:
— Custom shaders

— Procedural shaders
— Render overrides

* All the custom rendering modes need some sort

of programmer support, not always engine
support.

* |ts much easier than using something like Flex in
which you have to manage your own geometry.

Custom Shaders

Implements a standalone material that can
be used on regular assets.

Needs tools support for the editor dialog,
enabling artists to set the properties.

The shader data must be less than 128
bytes

ldeally works on all asset types but in
reality only a subset is implemented.

Typically implemented by the engine.

Procedural Shaders

Standard or custom shaders that have callbacks into
engine/game code.

The callback is more like a message and you get a
reason code.

Typical reason codes Init,Close and Update which is
called per frame.

Callbacks are normally game specific, live in game code
and are implemented by gameplay programmers.

The callback is free to modify the material in any way. It
can animate shader values, change textures.

More complex callbacks may render geometry or special
effects to a texture and then use the resuilt.

Render Overrides

Only works for mobys.

Per instance callback that can be set in the
moby instance.

The callback function is called instead of using
the normal rendering code.

The callback is called once for the entire moby.

You can render the moby or you can render
something completely different.

Cloaking effect is implemented with this.
Gameplay can implement their own callbacks.

Anisotropic

* Example of a full custom shader.

Anisotropic

* The following are examples of anisotropic
surfaces:

— Satin cloth

— Christmas tree balls (the ornaments covered
in threads)

— Compact Discs
— Brushed metal

— Hair

Anisotropic

* Ansiotropic surfaces have an inherent

grain (locally, favors a particular surface
tangent orientation)

* Distribution of surface normals along the
surface scratches or fibers is different from
the distribution across them

* A relatively distant observer sees the
lighting result, but not the microstructure.

Anisotropic

Traditional lighting models consider 3D surfaces
as being locally flat

The normal vector at a point on the surface is
orthogonal to the flatness

Implicitly assumes surface tangents are
uniformly distributed (isotropic distribution)

Effects such as bump mapping may perturb the
surface normals, but substructure of the surface
still modeled as locally flat

Anisotropic

From the art point of view the shader is
pretty much the same as the basic shader.

It has 3 textures, base map, normal map
and grain map. It has a couple of tint
colors and a specular power.

The grain map sets the anisotropic
direction. Its very difficult to create.

Shader only supports mobys

* How would you light a thread or hair?
* There is no traditional surface normal!

* Logically, each point on the thread has an
infinite “circle” of normals perpendicular to
the tangent at the point.

3/

/\/

Anisotropic

The full solution is to integrate the full the
contribution of all normals.

Too expensive, Too hard and not possible In
a fragment program

Pick the most significant normal and use it.

NiL projected into
normal plane)
L\L
Thread

/ — Normal plane

Anisotropic

Pick the normal that is co-planar with the
light vector and view vector.

This vector will maximize the lighting dot
products (i.e., it's the most significant
vector).

If you work the math out on paper you
don’t need to calculate the most significant
normal.

You don’t need the normal at all!

Anisotropic

Difftuse =sqrt(1-(<L T >)?)

Specular= sqgrt(1-(<L-T>)?)x
sgrt(1-(<V -T>)?)
<L T>x<V-T>

L is light to thread direction

V is eye to thread direction

T is the tangent (grain) direction

Anisotropic

* Actually, We do need a normal.

* Our shader implements per pixel anisotropic

and the grain direction changes with the

normal map. C oo

Anisotropic

* We need to keep the grain perpendicular
to the per pixel normal.

* Graham-Schmidt orthonormalization does
just this and its cheap.

« Tnew=||T-(N-T)N|

* Once we have computed the new grain we
are done with the normal.

Anisotropic

Implemented as a full custom shader.
Artists can apply the shader like any other
Artists control all the properties.

There are not many controls:

— Base map

— Normal map

— Grain map

— Tint and specular power controls

Anisotropic

The grain map is difficult to author.

Its similar to a normal map but its stored
as an XY component.

Its basically just a direction and could be
stored as an angle.

Very difficult to author if you want swirls
like brushed steel.

The code is implemented as 2 vertex
programs and a fragment program.

Anisotropic

Problems with Anisotropic lighting.

Its inherently 2 sided so you have to prevent the
back side of surfaces from lighting.

It needs a light direction making it very difficult to
implement as a baked light — What is the light
direction?

Real time lights are much easier, they have a
direction and a color.

This is why we only support mobys, the have 2
directional lights.

Cloaked

Cloaked

Implemented as a render override.

Artists don't get any say in it, the shader is
not available to them.

Can be enabled per instance and different
instances can use different settings.

It's a very simple effect, no math!
It's a little expensive for the GPU.
Was used by the Pirates in RCF.

Cloaked

Enabled by setting “m_user_layer func” in the
moby instance to the render callback function.

“m_user_layer data” points to a structure that
contains the settings and controls.

Available Control:

— Scale and bias control the distortion

— Tint color tints the cloaked effect

— Bloom adjust allow the cloaked objects to bloom

All the controls can be animated for more
dynamic effects.

Cloaked

* When enabled the engine sends the entire
moby to the sort layer.

* The callback is called by the core engine
In sorted back to front order.

* The effect is treated as if its alpha.

Cloaked

The callback function grabs the current frame
buffer as a texture.

— Requires 4mb of memory in the effects heap.
Renders the moby with depth only

Renders the moby again using the grabbed
framed buffer as a texture.

The normal maps of the shaders used by the
moby in normal rendering are used to offset the
samples.

Its all controlled by the control structure.

Cloaked

One feature that is missing is the ability to mix
the cloaked effect with the normal rendering.

This would allow the solid objects to gradually
cloak themselves rather that it just switching on
and off.

Its not immediately obvious how this would be
Implemented.

Its especially difficult if the moby has real time
lighting or shadows.

ur

Camera: World
Bind Pose

Fur

Implemented as an artist controlled
custom shader.

Only supports mobys.

Has controls for length and density of the
fur.

Uses a base texture to color the hair.

There is a built in texture that models the
hair itself.

Fur

It's a really simple technique.

Its expensive for the GPU but can be done
entirely on the GPU.

Lots of render passes

— Maybe skin and render the same mesh 16 or
more times.

Each pass is rendered in alpha so lots of
bandwith is used.

Fur

Traditionally fur used fins and shells.

The fins cause problems for a GPU

implementation because they require finding the
silhouette edge.

Fins are typically done on the CPU but this has
problems with skinning because the CPU never
sees the skinned positions.

This fur is rendered entirely with shells.

Its known as “Lengyel’s concentric fur shell
technique”.

Fur

First a solid moby is rendered, this is the
base or skin level.

For each shell the moby is rerendered
— The image of ratchet has 20 shells.

Each shell is scaled per vertex in the
direction of the normal.

Each shell is rendered with a “Hair Slice”
texture.

Fur

The first slice texture is placed on the first shell,
the second on the second shell etc etc

The hair texture is noisy and tiles nicely.

This allows so the base map UVs to be used for
the slice UVs, regardless of what they are.

We can control the global scale of the UVs, this
controls the density and size of each strand of
hair. At the lowest level it looks more like
feathers.

That's all it does for the basic fur.

Fur

We do a little more work..

Hair has anisotropic lighting and we know the direction of
the hair.

The hair direction can be changed via the normal map.

We use the alpha channel in the basemap to mask
where hair can go.

— Very expensive because you are still paying the full cost of all
the shells.

We change the hair direction by slightly adjusting the
UVs in a given direction.

The UV adjustment is scaled by the shell distance so
external shells move the UVs more than internal shells.

Fur

Other people have used the GPU to apply physical
properties to the fur. They render a texture which
contains the offset of each hair strand.

When making the offset texture you can account for
wind, movement of the object, drag and inertia.

You can do as much math as you like in the pixel shader,
ultimately you are writing out a 2D vector.

We tried this but it had some math which nobody
seemed to understand.

The fur was not used in RCF. Ratchet use a different
technique that was half done by code and half by art.

Ratchets fur was also a custom shader.

