JSON Exporter for Microsoft Excel

Giacomino Veltri
8/2/2010

Why Excel?

Our designers like to edit configuration data in table form.

People are familiar with Excel and its features (like inserting
and removing rows).

Creating a Ul for configuration data would take more time

than writing an exporter.
— This is still an open possibility if we have time in the future.

Config File Excel Format

Config data is grouped by class.
Header rows define the class and possible value types.

Each non-header row represents a member variable of that
class and its value(s) for each value type.

Config File Excel Format

Dark blue rows are
header rows.

Green rows are value
roOws.

Column D is the
SinglePlayer value.

Column E is the
Competitive value.

R
Balwim = o|w o~

i}
6
7
28
9
0

wlw ww | wwlw|wlw|w|w
(v R I T o T o)

=]

RocketLauncher

D

Variable Comments Value(s) _

SinglePlayer Competitive

Rate of Fire

xp[0] XPtogettoll

SinglePlayer Competitive

See Above

——
damage(2] standard ———
damage[2].alternate
—
by []

SinglePlayer Competitive

w

I
I

=]

m
=
o
<

bove
damage[0].standard _ 5
damagelOlaternate |] 7
damage[1].standard _

damage[1].alternate ———

damage[2].standard

=~

ca
(=]

damage[2].alternate
xp[0]
xp[1]

¥
=]
S |w [

[=]

Config File Excel Format

* Row 15 generates the
following lines of
“C Code”:

SheetName.SinglePlayer.Pistol.damage[0] .alternate
SheetName.Competitive.Pistol.damage[0] .alternate

* Note that the name of the sheet is present so multiple sheets
can be exported.

Parsing the “C Code”

 Each member generates a new node in the tree that
represents the config data hierarchy:

SheetName // Sample Output Json

- {

. e “SheetName”:
SinglePlayer Competitive {
“SinglePlayer”:
{
ol Pistol “Pistol”:
{

“Damage” :

Damage Damage [

]
}

“Alternate”:

Element O Element O y

// Competitive is similar

Alternate Alternate

Parsing the “C Code”

* ProcessLine() will split the line into the first member variable
and “everything else”.

» Afterits object is added to the hierarchy, ProcessArrayline() is
called to add child objects for each subscript. Missing

an”»

elements will contain the value “”.

e After array objects have been handled (if necessary),
ProcessLine() is called recursively on “everything else”.

Parsing the “C Code”

* “FindChildIndex(parent_index As Integer, child_name As
String)” will return the child in the hierarchy (and add it if it
does not exist already).

* “FindArrayChildindex(parent_index As Integer,
element_index As Integer)” will add a child to the
element_index slot of the parent array object.

* |deally, these two lower-level functions (and the functions
they call) would be a separate Excel Add-In, since they are not
specific to our config data structure in Excel.

Writing the File

« After all the rows in Excel have been processed, the hierarchy
is output to a file using these functions:

PrintNodeAr SaFA(RCceRNNNEESE T NNRNESSEEAN T NCdent ASWString) AS String
PrintNodeObject (node index As Integer, indent As String) As String
PrintNode (node index As Integer, indent As String) As String

— PrintNode is just a helper that calls PrintNodeObject or
PrintNodeArray.

Excel Add-In Issues

Each node in the tree has an array of indices as children.
These values are the index in the “all objects” array because |
could not figure out how to make a dynamic array of pointers
to nodes in Visual Basic.

— Using an array of variants yielded "Only user-defined types defined in
public object modules can be coerced to or from a variant or passed to
late-bound functions®.

— Using an array of objects did not work because | could not figure out
how to access my member variables on an Object, nor how to cast
from an Object to my node type.

Excel Add-In Issues

 The “all objects” array is global.

— | would have preferred to create the array locally and pass it in as a
reference parameter; however, Visual Basic locks the array size of
arrays passed to functions as reference parameters.

— A fixed-size array is less desirable since guessing a maximum that is
too small would require republishing the add-in.

* [t seems like FindChildIndex() and FindArrayChildIndex() could
be member functions on the node data type.
— If I knew VBA better, | probably would have done it this way.

* It really should be two modules, or at least split up better.

— Yes — the JSON hierarchy portion should be a Public Module consumed
the code that parses our specific Excel spreadsheet format. But, |
didn’t feel like stabbing myself in the eye that day.

